On a Result of W.A. Kirk and L.M. Saliga

MILAN R. TASKOVIĆ

ABSTRACT. We prove that a result of Kirk and Saliga [J. Comput. Appl. Math., 113 (2000), 141-152, Theorem 4.2., p. 149] has been for the first time proved before 25 years in Tasković [Publ. Inst. Math., 41 (1980), 249–258, Theorem 1, p. 250]. But the authors neglected and ignored this historical fact.

1. Introduction

In recent years a great number of papers have presented generalizations of the well-known Banach-Picard contraction principle.

Recently, Kirk and Saliga have proved the following statement (see [1, Theorem 4.2., p. 149]).

Theorem 1. (Kirk-Saliga [1], Walter [8]). Let (X, ρ) be a complete metric space and suppose $T: X \to X$ has bounded orbits and satisfies the following condition:

(K)
$$\rho[Tx, Ty] \le \Phi\left(\operatorname{diam}\{x, y, Tx, Ty, T^2x, T^2y, \ldots\}\right)$$

for all $x, y \in X$, where $\Phi : \mathbb{R}^0_+ \to \mathbb{R}^0_+ := [0, +\infty)$ is a continuous non-decreasing function and satisfies $\Phi(t) < t$ for every t > 0. Then T has a unique fixed point $\xi \in X$ and $\{T^n(a)\}_{n \in \mathbb{N}}$ converges to ξ for every $a \in X$.

In connection with this, in 1980 I have proved the following result of fixed point on metric spaces which has a best long of all known sufficiently conditions (linear and nonlinear) for the existing unique fixed point, cf. Tasković [3], [4] and [5].

We notice that the manuscript of [3] was received by the editors January 27, in 1979, but published in 1980. This result generalizes a great number of known results.

In this sense, first, let (X, ρ) be a metric space and T a mapping of X into itself. A metric space X is said to be T-orbitally complete iff every Cauchy sequence which is contained in orbit $O(x) = \{x, Tx, T^2x, \ldots\}$ for some $x \in X$ converges in X.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 47H10, Secondary: 54H25.

Key words and phrases. Fixed points, diametral φ -contractions, complete metric spaces, nonlinear conditions for fixed points, optimization.

Theorem 2. (Tasković [3]). Let T be a mapping of a metric space (X, ρ) into itself and let X be T-orbitally complete. Suppose that there exists a function $\varphi : \mathbb{R}^0_+ \to \mathbb{R}^0_+ := [0, +\infty)$ satisfying

$$(\mathrm{I} \varphi) \qquad \Big(\forall t \in \mathbb{R}_+ := (0, +\infty) \Big) \Big(\varphi(t) < t \ \text{and} \ \limsup_{z \to t + 0} \varphi(z) < t \Big)$$

such that

(A)
$$\rho[Tx, Ty] \le \varphi\Big(\operatorname{diam}\{x, y, Tx, Ty, T^2x, T^2y, \ldots\}\Big)$$

and diam $O(x) \in \mathbb{R}^0_+$ for all $x, y \in X$. Then T has a unique fixed point $\xi \in X$ and $\{T^n(a)\}_{n \in \mathbb{N}}$ converges to ξ for every $a \in X$.

A brief first proof of this statement may be found in 1980 from Tasković [3]. Other brief proofs for this we can see in Tasković [4], [5], [6] and [7].

Annotation 1. We notice that Theorem 1 is a very special case of Theorem 2. Indeed, since $\Phi: \mathbb{R}^0_+ \to \mathbb{R}^0_+$ of Theorem 1 satisfy all required hypothesis $(I\varphi)$ for the function $\varphi: \mathbb{R}^0_+ \to \mathbb{R}^0_+$ in Theorem 2 (other conditions are equal, an example (K) and (A) and completeness), directly applying Theorem 2 we obtain Theorem 1.

Annotation 2. De facto, in [3] I have introduced the concept of a diametral φ -contraction T of a metric space (X, ρ) into itself, i.e., there exists a function $\varphi : \mathbb{R}^0_+ \to \mathbb{R}^0_+$ satisfying $(I\varphi)$ and (A).

Annotation 3. In the preceding sense, since the function $\Phi: \mathbb{R}^0_+ \to \mathbb{R}^0_+$ (in Theorem 1) is continuous nondecreasing and satisfies $\Phi(t) < t$ for every t > 0, we directly obtain that the conditions $(I\varphi)$ in Theorem 2 hold. Thus we directly obtain Theorem 1.

Annotation 4. The main part of the first written proof of Theorem 2 (on diametral φ -contractions) may be found in 1978 as a frame for general convergence of real sequences. The proof of Theorem 2 is based upon the following fundamental lemma in 1978.

Lemma 1. (Tasković [2]). Let the mapping $\varphi : \mathbb{R}^0_+ \to \mathbb{R}^0_+$ have the property (I φ). If the sequence (x_n) of nonnegative real numbers satisfies the condition of the form

$$x_{n+1} \le \varphi(x_n), \text{ for } n \in \mathbb{N},$$

then the sequence (x_n) tends to zero. The velocity of this convergence is not necessarily geometrical.

We notice that the manuscript [2] was received by the editors on October 15, 1975, but published in 1978.

References

- [1] W. A. Kirk and L. M. Saliga, Some results on existence and approximation in metric fixed point theory, J. Comput. Appl. Math., 113 (2000), 141-152.
- [2] M. R. Tasković, A generalization of Banach's contraction principle, Publ. Inst. Math. **37** (1978), 179-191.

- [3] M.R. Tasković, Some results in the fixed point theory-II, Publ. Inst, Math., 41 (1980), 249-258.
- [4] M.R. Tasković, Some theorems on fixed point and its applications, Annal. Soc. Math. Polonae, Series I, Comm. Math. 24 (1984), 323-334.
- [5] M.R. Tasković, Some new principles in fixed point theory, Math. Japonica, 35 (1990), 645-666.
- [6] M.R. Tasković, Nonlinear Functional Analysis, Second Book, Monographs Global Convex Analysis: General convexity, Variational methods and Optimization, Zavod za udžbenike i nastavna sredstva and Vojnoizdavački zavod, Beograd, 2001, (In Serbian), 1223 pages. English summary: Transversal and fixed points, forks, general convex functions and applications, Vol. 2 (2001), 1067-1172.
- [7] M.R. Tasković, *Theory of transversal point, spaces and forks*, Monographs of a new theory, Beograd 2005, 1054 pages, VIZ–Beograd.
- [8] W. Walter, Remarks on a paper by F. Browder about contractions, Nonlinear Anal., TMA, 5 (1981), 21-25.

MILAN R. TASKOVIĆ FACULTY OF MATHEMATICS 11000 BELGRADE, P.O. BOX 550 SERBIA

Home Address: MILAN R. TASKOVIĆ NEHRUOVA 236 11070 BELGRADE SERBIA

E-mail address: andreja@predrag.us